Imaging and variability studies of CTA 102 during the 2016 January γ -ray flare

Xiaofeng Li^{1,2,3}, P. Mohan¹, T. An^{1,4}, X. Hong^{1,2,3,4}, Xiaopeng Cheng^{1,3}, Wei Zhao^{1,4}, J. Yang^{1,5}, Zhongli Zhang¹, Yingkang Zhang^{1,3}
lixf@shao.ac.cn

¹Shanghai Astronomical Observatory, China

²ShanghaiTech University, China

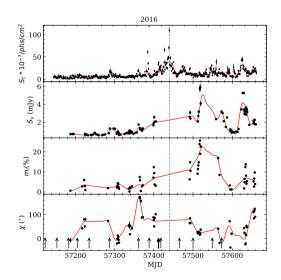
³University of Chinese Academy of Sciences, China

⁴Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, China

⁵Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory,

Sweden

Oct. 30, 2017, Jeju



Intro. of CTA 102

CTA 102 (z = 1.037) is a flat-spectrum radio-loud quasar (FSRQ) with high polarizaton degree. It is a prominent $\gamma\text{-ray}$ source and detected by Fermi-LAT.

15 GHz VLBA images indicate a twisted morphology with jet bending on a scale of $\sim\!20$ mas (Kellermann et al. 1998)

The jet knots displaying complex kinematics involving a mixture of apparent superluminal motion and stationary components in multi-epoch 43 GHz observations (Jorstad et al. 2001, 2005).

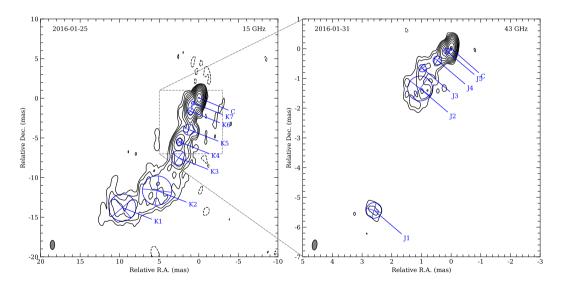
VI BA observations of CTA 102

Table: Image parameters of VLBA observation

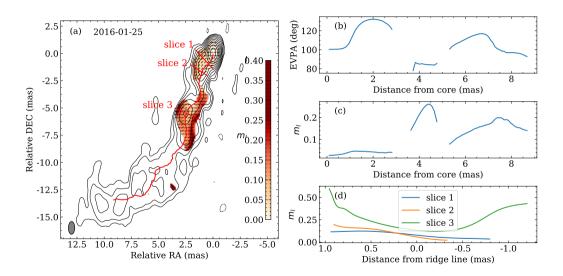
Epoch	Code	ν	S_{tot}	rms	b _{mai}	b _{min}	P.A.
yyyy-mm-dd		(GHz)	(Jy)	(mJy)	(mas)	(mas)	(deg)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
2016-01-01	BM413M	43	2.7	2.1	0.55	0.18	-12.1
2016-01-25	BA113C	15	2.7	0.4	1.65	0.69	-19.7
2016-01-31	BM413N	43	2.2	1.4	0.34	0.16	-7.2
2016-03-18	BM413O	43	2.4	1.0	0.44	0.18	-5.9
2016-04-22	BM413P	43	2.3	1.0	0.37	0.16	-6.9
2016-06-10	BM413Q	43	3.0	0.7	0.42	0.17	-4.7
2016-07-04	BM413R	43	2.9	0.7	0.45	0.19	-10.8

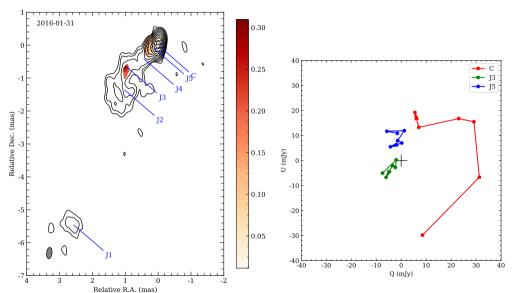
Notes: Columns are as follows: (1) date of observation: (2) VLBA experiment code: (3) observing frequency in GHz; (4) total flux density in millijansky; (5) rms noise level of image; (6) FWHM major axis of restoring beam;

(7) FWHM minor axis of restoring beam: (8) position angle of major axis restoring beam in degrees.

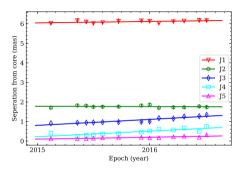

Our 15 GHz VLBA observations were carried out on 2016 January 25 (code: BA113; PI: T. An) during the 2016 January γ -ray flare event.

The 43 GHz VLBA data were collected from The VLBA-BU-BLAZAR Program (PI: Alan Marscher,


http://www.bu.edu/blazars/VLBAproject.html).


Images at 15 GHz and 43 GHz

Polarization images at 15 GHz


Polarization images at 43 GHz

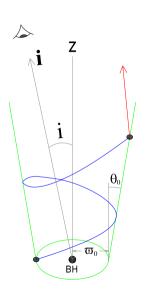
Jet properties

Table: Component kinematics and jet properties from 43 GHz data.

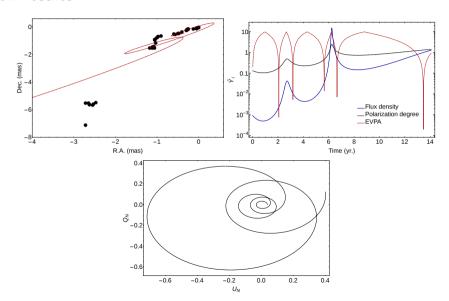
Kinematic quantity	Symbol	Estimate
Component proper motion	J1	0.07
$(mas yr^{-1})$	J2	0.04
	J3	0.33
	J4	0.30
	J5	0.11
Apparent bulk speed (units of c)	β_{\perp}	17.5
Intrinsic bulk speed (units of c)	β	≥ 0.998
Bulk Lorentz factor	Γ	≥ 17.5
Position angle	λ	128.3°
Inclination angle	i	$\leq 6.6^{\circ}$
Projected half opening angle	ψ	15.6°
Intrinsic half opening angle	θ_0	$\leq 1.8^{\circ}$

Helical jet model

$$\varpi = f \left(1 + \left(\frac{at+b}{f} \right)^2 \right)^{\frac{1}{2}}; \ \dot{\varpi} = \frac{a}{\varpi} (at+b), \tag{1}$$


$$z = \frac{\varpi - \varpi_0}{\tan \theta_0}; \ \dot{z} = \frac{\dot{\varpi}}{\tan \theta_0}, \tag{2}$$

$$\phi = \frac{1}{\sin \theta_0} \left(\tan^{-1} \frac{at+b}{f} - \tan^{-1} \frac{b}{f} \right); \ \dot{\phi} = \frac{af}{\varpi^2 \sin \theta_0}, \tag{2}$$


where $a=\beta_0\sin\theta_0$, $b=(\varpi_0^2-j^2/\beta_0^2)^{1/2}$, $f=j/\beta_0$ and the dimensionless coordinate time parameter $t=(\tilde{t}/t_0)-1$. The angle between the observer's line of sight and the direction of the instantaneous velocity vector of the jet component ξ is given by

$$\cos \xi = \frac{\dot{\varpi} \cos \phi \sin i - \varpi \dot{\phi} \sin \phi \sin i + \dot{z} \cos i}{(\dot{\varpi}^2 + \varpi^2 \dot{\phi}^2 + \dot{z}^2)^{1/2}},$$
 (2)

(Mohan et al. 2015)

Simulation results

Magnetic field strength

Assuming a conical jet geometry and equipartition between the magnetic energy density and the particle kinetic energy density in the pc-scale jet, the core offset per unit observation frequency $\Omega_{r\nu}$ (pc GHz), core distance $r_{\rm core}$ (pc) and the magnetic field strengths at 1 pc (B_1 in G) and at the core ($B_{\rm core}$ in G) are

$$\Omega_{r\nu} = 4.85 \times 10^{-9} \frac{D_L \Delta \theta}{(1 + \tilde{z})^2 \left(\nu^{-1} - \nu_0^{-1}\right)},\tag{3}$$

$$r_{\rm core} = \frac{\Omega_{r\nu}}{\nu \sin i},\tag{4}$$

$$B_1 \cong 0.025 \left(\frac{\Omega_{r\nu}^3 (1+\tilde{z})^2}{\Gamma^2 \theta_0 \sin^2 i} \right)^{1/4}, \tag{5}$$

$$B_{\rm core} = B_1 r_{\rm core}^{-1}. (6)$$

where D_L is the luminosity distance, \tilde{z} is the redshift, ν_0 is a reference observation frequency, and $\Delta\theta$ is the difference between the apparent core position measured at frequencies ν and ν_0 .

we obtain $\Omega_{r\nu}=40.5$ pc GHz, $r_{\rm core}=22.9$ pc, $B_1=0.96$ G and $B_{\rm core}=0.04$ G, which is roughly consistent with the estimated $B_{\rm core}=0.07-0.11$ G in Fromm et al (2013) for this source.

Summary

The presented 15 GHz VLBA observations were carried out on 2016 January 25, during a prominent γ -ray flare with quasi-simultaneous monitoring also at 43 GHz in an ongoing survey of γ -ray blazars by the Boston University group. The main results from this study include:

- 1. An oscillatory and bending pc-scale (\leq 17 mas) jet structure is inferred from the 15 and 43 GHz multi-epoch VLBA images spanning \sim 17 months.
- 2. Proper motions for the innermost (≤ 1 mas) jet components (J3, J4, J5) were determined in the range of 0.04-0.33 mas yr $^{-1}$. The jet proper motions were employed to estimate the maximum bulk Lorentz factor $\Gamma \geq 17.5$, mean jet position angle $\lambda = 128.3^{\circ}$, inclination angle $i \leq 6.6^{\circ}$ and intrinsic half opening angle $\theta_0 \leq 1.8^{\circ}$.
- The 15 and 43 GHz polarization images indicate a weakly polarized core and moderately polarized jet components. The polarization is observed to increase along the jet walls, likely manifesting the helical magnetic field.
- 4. A helical jet model was applied to simulate long-term optical-band variability. The contrast in estimates for flux density, polarization degree and EVPA from the simulation suggest that long term variability is sufficiently captured in the helical scenario. A developing observed anti-clockwise rotation of the polarization vector in the Stokes Q-U plane is consistent with expectation from the simulations.
- 5. An oscillatory pc-scale jet morphology, polarization behaviour and the expectation of γ -ray emission from the pc-scales are employed to argue for a long timescale (years) dominance by the helical jet scenario with kinematics being supported by a magnetic surface.
- 6. Apparent core shift of $\Omega_{r\nu}=$ 40.5 pc GHz the magnetic field strength at the core $B_{\rm core,43GHz}=$ 0.04 G are estimated.

Thanks