Imaging and variability studies of CTA 102 during the 2016 January γ-ray flare

Xiaofeng Li ${ }^{1,2,3}$, P. Mohan ${ }^{1}$, T. An ${ }^{1,4}$, X. Hong ${ }^{1,2,3,4}$, Xiaopeng Cheng ${ }^{1,3}$, Wei Zhao ${ }^{1,4}$, J. Yang ${ }^{1,5}$, Zhongli Zhang ${ }^{1}$, Yingkang Zhang ${ }^{1,3}$
lixf@shao.ac.cn
${ }^{1}$ Shanghai Astronomical Observatory, China
${ }^{2}$ ShanghaiTech University, China
${ }^{3}$ University of Chinese Academy of Sciences, China
${ }^{4}$ Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, China
${ }^{5}$ Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory,
Sweden

Oct. 30, 2017, Jeju

Intro. of CTA 102

CTA $102(z=1.037)$ is a flat-spectrum radio-loud quasar (FSRQ) with high polarizaton degree. It is a prominent γ-ray source and detected by Fermi-LAT.
15 GHz VLBA images indicate a twisted morphology with jet bending on a scale of ~ 20 mas (Kellermann et al. 1998)
The jet knots displaying complex kinematics involving a mixture of apparent superluminal motion and stationary components in multi-epoch 43 GHz observations (Jorstad et al. 2001, 2005).

VLBA observations of CTA 102

Table: Image parameters of VLBA observation

Epoch yyyy-mm-dd (1)	Code	ν (GHz)	$S_{\text {tot }}(\mathrm{Jy})$	rms (mJy)	$b_{\text {maj }}$ (mas)	$b_{\text {min }}$ (mas)	P.A. (deg) (5)
$2016-01-01$	BM413M	43	2.7	2.1	0.55	0.18	-12.1
$2016-01-25$	BA113C	15	2.7	0.4	1.65	0.69	-19.7
$2016-01-31$	BM413N	43	2.2	1.4	0.34	0.16	-7.2
$2016-03-18$	BM413O	43	2.4	1.0	0.44	0.18	-5.9
$2016-04-22$	BM413P	43	2.3	1.0	0.37	0.16	-6.9
$2016-06-10$	BM413Q	43	3.0	0.7	0.42	0.17	-4.7
$2016-07-04$	BM413R	43	2.9	0.7	0.45	0.19	-10.8

Notes: Columns are as follows: (1) date of observation; (2) VLBA experiment code; (3) observing frequency in GHz; (4) total flux density in millijansky; (5) rms noise level of image; (6) FWHM major axis of restoring beam;
(7) FWHM minor axis of restoring beam; (8) position angle of major axis restoring beam in degrees.

Our 15 GHz VLBA observations were carried out on 2016 January 25 (code: BA113; PI: T. An) during the 2016 January γ-ray flare event.
The 43 GHz VLBA data were collected from The VLBA-BU-BLAZAR Program (PI: Alan Marscher, http://www.bu.edu/blazars/VLBAproject.html).

Images at 15 GHz and 43 GHz

Polarization images at 15 GHz

Polarization images at 43 GHz

Jet properties

Table: Component kinematics and jet properties from 43 GHz data.

Kinematic quantity	Symbol	Estimate
Component proper motion	J 1	0.07
$\left(\right.$ mas yr $^{-1}$)	J 2	0.04
	J 3	0.33
	J 4	0.30
	J 5	0.11
Apparent bulk speed (units of c)	β_{\perp}	17.5
Intrinsic bulk speed (units of c)	β	≥ 0.998
Bulk Lorentz factor	J	≥ 17.5
Position angle	λ	128.3°
Inclination angle	i	$\leq 6.6^{\circ}$
Projected half opening angle	ψ	15.6°
Intrinsic half opening angle	θ_{0}	$\leq 1.8^{\circ}$

Helical jet model

$$
\begin{align*}
\varpi & =f\left(1+\left(\frac{a t+b}{f}\right)^{2}\right)^{\frac{1}{2}} ; \dot{\varpi}=\frac{a}{\varpi}(a t+b), \tag{1}\\
z & =\frac{\varpi-\varpi_{0}}{\tan \theta_{0}} ; \dot{z}=\frac{\dot{\varpi}}{\tan \theta_{0}}, \\
\phi & =\frac{1}{\sin \theta_{0}}\left(\tan ^{-1} \frac{a t+b}{f}-\tan ^{-1} \frac{b}{f}\right) ; \dot{\phi}=\frac{a f}{\varpi^{2} \sin \theta_{0}},
\end{align*}
$$

where $a=\beta_{0} \sin \theta_{0}, b=\left(\varpi_{0}^{2}-j^{2} / \beta_{0}^{2}\right)^{1 / 2}, f=j / \beta_{0}$ and the dimensionless coordinate time parameter $t=\left(\tilde{t} / t_{0}\right)-1$. The angle between the observer's line of sight and the direction of the instantaneous velocity vector of the jet component ξ is given by

$$
\begin{equation*}
\cos \xi=\frac{\dot{\varpi} \cos \phi \sin i-\varpi \dot{\phi} \sin \phi \sin i+\dot{z} \cos i}{\left(\dot{\varpi}^{2}+\varpi^{2} \dot{\phi}^{2}+\dot{z}^{2}\right)^{1 / 2}} \tag{2}
\end{equation*}
$$

(Mohan et al. 2015)

Simulation results

Magnetic field strength

Assuming a conical jet geometry and equipartition between the magnetic energy density and the particle kinetic energy density in the pc-scale jet, the core offset per unit observation frequency $\Omega_{r \nu}$ (pc $\mathrm{GHz})$, core distance $r_{\text {core }}(\mathrm{pc})$ and the magnetic field strengths at $1 \mathrm{pc}\left(B_{1}\right.$ in G$)$ and at the core ($B_{\text {core }}$ in G) are

$$
\begin{align*}
\Omega_{r \nu} & =4.85 \times 10^{-9} \frac{D_{L} \Delta \theta}{(1+\tilde{z})^{2}\left(\nu^{-1}-\nu_{0}^{-1}\right)} \tag{3}\\
r_{\text {core }} & =\frac{\Omega_{r \nu}}{\nu \sin i}, \tag{4}\\
B_{1} & \cong 0.025\left(\frac{\Omega_{r \nu}^{3}(1+\tilde{z})^{2}}{\Gamma^{2} \theta_{0} \sin ^{2} i}\right)^{1 / 4}, \tag{5}\\
B_{\text {core }} & =B_{1} r_{\text {core }}^{-1} \tag{6}
\end{align*}
$$

where D_{L} is the luminosity distance, \tilde{z} is the redshift, ν_{0} is a reference observation frequency, and $\Delta \theta$ is the difference between the apparent core position measured at frequencies ν and ν_{0}. we obtain $\Omega_{r \nu}=40.5 \mathrm{pcGHz}, r_{\text {core }}=22.9 \mathrm{pc}, B_{1}=0.96 \mathrm{G}$ and $B_{\text {core }}=0.04 \mathrm{G}$, which is roughly consistent with the estimated $B_{\text {core }}=0.07-0.11 \mathrm{G}$ in Fromm et al (2013) for this source.

Summary

The presented 15 GHz VLBA observations were carried out on 2016 January 25, during a prominent γ-ray flare with quasi-simultaneous monitoring also at 43 GHz in an ongoing survey of γ-ray blazars by the Boston University group. The main results from this study include:

1. An oscillatory and bending pc-scale (≤ 17 mas) jet structure is inferred from the 15 and 43 GHz multi-epoch VLBA images spanning ~ 17 months.
2. Proper motions for the innermost (≤ 1 mas) jet components (J3, J4, J5) were determined in the range of
 factor $\Gamma \geq 17.5$, mean jet position angle $\lambda=128.3^{\circ}$, inclination angle $i \leq 6.6^{\circ}$ and intrinsic half opening angle $\theta_{0} \leq 1.8^{\circ}$.
3. The 15 and 43 GHz polarization images indicate a weakly polarized core and moderately polarized jet components. The polarization is observed to increase along the jet walls, likely manifesting the helical magnetic field.
4. A helical jet model was applied to simulate long-term optical-band variability. The contrast in estimates for flux density, polarization degree and EVPA from the simulation suggest that long term variability is sufficiently captured in the helical scenario. A developing observed anti-clockwise rotation of the polarization vector in the Stokes Q-U plane is consistent with expectation from the simulations.
5. An oscillatory pc-scale jet morphology, polarization behaviour and the expectation of γ-ray emission from the pc-scales are employed to argue for a long timescale (years) dominance by the helical jet scenario with kinematics being supported by a magnetic surface.
6. Apparent core shift of $\Omega_{r \nu}=40.5 \mathrm{pc} \mathrm{GHz}$ the magnetic field strength at the core $B_{\text {core }, 43 \mathrm{GHz}}=0.04 \mathrm{G}$ are estimated.

Thanks

