

Contents

Background KJCC System Introduction Status of system development Correlation Status

Target Arrays of KJCC East Asian VLBI Network (EAVN)

Korea-Japan Joint VLBI Network (KaVA)

SEOUL

KYŃ

VERA JVN

Daejeon Correaltor development history

- 2005.7.7 : Exchange MOU joint development between KASI and NAOJ
- 2006 : Start development project in each side(NAOJ : develop RVDB & VERA2000, KASI: develop VCS), VCS design was started
- 2007~2009 : KASI developed and installed VCS
- 2009 : NAOJ developed and installed VERA2000 Playback and RVDB
- 2010.5.13 : Open the Korea-Japan Correlation Center
- 2011.7.20 : Exchange MOA for joint operation between KASI and NAOJ
- 2012.7.11 : Move the KJCC from Seoul to Daejeon
- ✤ 2013 : normal operation with 1Gbps

Daejeon Correlator Framework

 한국천문연구원

 Korea Astronomy & Space Science Institute

Development of Daejeon correlator VCS (VLBI Correlation Subsystem) specifications

# of Antennas	16
# of Inputs / Antenna	4 bands (4Fx1P, 2Fx2P,1Fx2P+2Fx1P)
Max. # of Correlations / Input	120 Cross + 16 Auto
Subarray	2 case (12 + 4, 8 + 8)
Bandwidth for each Input	512 MHz
Digitization for each Input	1 Gsps by 2bits/sample
Data Rates per antenna	8 Gbps VSI-H (32 parallels, 64 MHz clock)
Max. Delay compensation	±36,000 km
Max. Fringe Tracking	1,075 kHz
Architecture	FX type, with FPGA and DSP chips
Word length in FFT	16+16 bits fixed point for real & imag.
Integration	25.6 msec ~ 10.24 sec
Data compression (Flexible Binning)	8,192 channels

Playback Systems

- Mark5B : VSI, 1Gbps recording/playback Mark6 : VDIF, 1~8/16/32Gbps recording/playback
- VERA2000 : 1Gbps, which is modified by NAOJ according to DIR1000, will be used for Playing back DIR2000 tape media for VERA.
- OCTADISK : VDIF, modified using RVDB with 4Gbps recorder/playback developed by NAOJ.
- OCTADISK2 : VDIF, 8~32Gbps recording/8Gbps playback
- Optical Fiber : Capable of dealing with the full data rate of 8 Gbps.

Raw VLBI Data Buffer basic configuration

VLBI Correlation Subsystem (VCS) (2007.8-2009.7)

- 16 Stations, 2Gbps x 4 substreams/station (in total 8Gbps)
- •Correlation : (120 Cross + 16 Auto) x 4 sub-stream
- •Serialized data sub-streams in time domain, and Parallel processing in frequency channels after FFT.
- •Full polarization observation supported (up to 8 stations)
- •Two sub-array modes prepared (12+4 and 8+8).
- •Max. data output rate of 1.4GB/sec

PEDA(Peta-scale Epoch D.A.)

- Max. data rate of 1.4GB/sec from VCS (~10% at average operation)
- PEDA (specification)
 - Architecture
 - Infiniband
 - ~100 TB
 - Expected Max. Capacity
 - 1~3 PB for 1 year (EAVN)
- Introduced this machine in 2009
 - It is old and maintenance service from manufacturer will be terminated within 2016
 - New machine is needed

~100 TB

New Data Archive System VDA(VCS Data Archive)

- CPU : Intel ZEON, 32 cores
- Memory : 32GB
- Storage : 160TB(RAID 5, 6)
- Interface :
 - 10GbE x 8 ea, SFP+(4 VCS, 4 External)
 - 10GbE x 4ea, 10GBASE-T (Gluster File System)
 - IGbE x 4ea, 1GBASE-T (Control)
- Access speed :
 - Write : max 1.4GB/sec
 - Read : max 2.2GB/sec

Installed and tested last week

Daejeon Correlator

DiFX Correlator on HPC

Correlation Mode

Corr. mode	Band width [MHz]	Output streams	#bits	Output data rate [Mbps]	Clock rate [MHz]
^a C1	256	1	2	1024	32
C2	128	2	2	1024	32
C3	64	4	2	1024	32
C4	32	8	2	1024	32
C5	16	16	2	1024	32
^b W1	512 x 4band	4	2	8192	64
W2	512 x 4band	1IF ^c x2P ^d 2IFx1P	2	8192	64
W3	512 x 4band	2IFx2P	2	8192	64

a, Narrow band, b. Wideband, c. IF, d. Polarization

Support wideband over 8Gbps

SGbps concept(Total 2048MHz BW)

Obs Combination(w/ polarization)

Array	Concept			
KVN	22L/R	43L/R	86L/R	129L/R
KaVA	22L	22R	43L	43R
KVN/NRO 45/CVN	22L	22R	86L	86R
KVN/NRO /CVN	43L	43R	86L	86R

Data transmission SW

- In case of KVN 8Gbps or VDIF format obs data to upload the observed data to RVDB,
 - the observed data is needed to be split with 4 streams as time-ordered because the method to upload overall 8192 Mbps to OCTADDB one time as described before.
 - Already finished the Data transmission SW development and now used to upload 1 or 2Gbps observation data from the massive server to RVDB with optical link as like bellowing figure.

Data conversion SW development

#	SW	Function
1	Mark5BtoVDIF	Convert Mark5B format to VDIF format
2	VDIFtoMark5B	Convert VDIF format to Mark5B format
3	VDIFtoVDIF	Convert General VDIF format to OCTA- VDIF format
4	Cut_Mark5B	Extract Data from Mark5B format file
5	Cut_VDIF	Extract Data from VDIF format file

CODA/FITS development

Multi-frequency Multi-polarization (wideband mode, ex: 8Gbps)

- CODA is currently possible to support
- If selection rule of frequency part will be adopted, CODA/FITS for each IF will be generated

Direct FITSgen SW development

- Parallel CCcoda will be needed to be developed
- Development period : about 1month
- The generation speed of FITS should be considered and needed.
- Development cost should be considered(Leonid, Kan'ya-san request)
 - About 700,000JPY
- Dual-polarization mode support
 - CODAgen SW development was completed.
 - Test obs data was used (s17so01a(k17046a), C2~C5 mode)
 - Please see next pages.

C3(64MHzBW x 4ch) mode(LLRR)

KVN Halcyon recorder (Specification)

- Target processor : Intel Xeon
- □ Target board
- Asrock X99 extreme11
- DDR4 RAM 32GBytes
- Broadcom BCM57711 NIC 10GbE PCIe
- Operating System : FirmOS(like DOS)
 - include scheduler
 - support multi-core
 - no filesystem
 - <u>DRAM/NIC/SATA control directly</u> (without device driver)
- Build environment: gcc, nasm(boot code)
 - <u>can make full resources and performance</u>
 - recording speed <u>8.224Gbps</u>(VDIF UDP)
 - recordable capacity <u>90%</u> of SATA HDD
- very cheap(Mainboard/CPU/RAM/NIC/Chassis)
 - around \$5,000 without HDDs

KYS-KTN baseline

1Gbps SNR (MK5)

8Gbps SNR (Halcyon + MK6)

※ SNR comparison: 1Gbps(64 MHz BW/4IF) and 8Gbps(512MHz BW/4IF) Expected value of theoretical sensitivity increment (about 3 times) is well followed according to the bandwidth increase (8 times). The results of Halcyon are almost same as those of KYS Mark6

HDD checking system

- HDD with huge capacity is used to record high rates of obs data.
- In recording at Obs., the data was correctly recorded, but the diskpack was not recognized at Correlator center during playingback
- In order to overcome this issue, HDD checking system was developed using FirmOS same as OS of KVN Halcyon recorder.

EAVN(a17107a) EHT campaign

Plot file version 22 created 07-SEP-2017 15:31:46 3C273 A17107A.MSORT.1

Freq = 22.0990 GHz, Bw = 32.000 MH Calibrated with CL # 3 but no bandpass applied

-200 HIT - MDC 0.4 0.2 0.0 200 -200 1.0 0.0 200 -200 0.6 0.4 0.2 0.0 2210021201202002202602300330 **FREQ MHz**

Correlation Status (2017A)

KVN only (216) by DiFX			
Туре	Obs time (Hours)	HDD (TB)	
1Gbps	1,817.5	2,730.3	
2~8Gbps	391.2	3,803.3	
Total	2,208.7	6,533.6	

KaVA (86) by Daejeon Corr.				
Туре	Obs time (Hours)	HDD (TB)		
KaVA	570.9	2027.2		
KVN (@KaVA)	111.8	237.5		
Total	682.7	2,264.7		

EAVN (16) by Daejeon Corr.			
Туре	Obs time (Hours)	HDD (TB)	
EAVN	119.2	494.1	
Total	119.2	494.1	

- FITS file for KVN only is currently delivered to PI within 2-weeks.
- In case of KaVA/EAVN, FITS file is distributed to PI within 1.5 month after arriving the media at KJCC, which depends on the diskpack delivery or data copy, transmission.
- In 2017A, FITS deliver period
 - AGN : 25days (mostly KaVA obs)
 - ES : 22days
 - SFR : 58days

Near Future : Data Transmission

Data transmission from each Obs.

- Stardom server were prepared
- Mark5B data for KaVA will be transferred mid of next year

