

Interferometric Monitoring of Gamma-ray Bright AGNs: Exploring the Variability of the Flat Spectrum Radio Source 1633+382

J. C. Algaba, B. Rani and the iMOGABA collaboration

ASIAA Colloquium, July 28th 2017

Contents

- Gamma Rays
- iMOGABA
- **1633+382**
- Correlations
- Shock-in-jet?
- Summary

- Fermi-LAT observes the gamma-rays sky
 - All sky survey in 2 orbits (~3 hours)
 - 4 years of data released in their 3FGL catalog (Acero+15)
 - Most of the sources are AGNs
- Where does the high energy flux come from?
 - Poor Fermi resolution
 - Only <50 sources show extended structure (out of >3000)
- Synergy with other programs
 - Multi-frequency analysis
 - High-resolution VLBI

- Gamma-ray flares are common!
 - Left: 4 years of observations
 - Right: 10 weeks of activity in late 2011

Credit: NASA/DOE/Fermi LAT Collaboration

- What is the location of the gamma-ray flares?
 - Downstream the jet
 - Near to the central engine, around BLR
 - (Both...?)
- What is the cause of the gamma-ray flares in AGNs?
 - Relativistic Jet of High Energy Plasma
 - Doppler boosting of Synchrotron radiation
 - Inverse Compton Scattering

Key Science Project for KVN

- Interferometric Monitoring of Gamma-ray bright AGNs
- Milliarcsecond scales
- Monthly observations started on December 2012
- Sample of ~30 sources
- Simultaneous @ 22, 43, 86, 129 GHz
- Synergy with other monitoring programs
 - e.g., MOGABA, BU 43 GHz Monitoring, MOJAVE,...
- Unique in its simultaneous high frequency observations
- No other VLBI program above 43 GHz
 - Excel to probe innermost, optically thin regions of AGNs
- Science Case: Study the origin of Gamma-ray flares

Monitoring of Gamma-ray Bright AGNs

Home MOGABA iMOGABA Publications KVN

• •

Interferometric Monitoring of Gamma-ray Bright AGNs

Images of the Gamma-ray Bright AGNs taken with Korean VLBI Network

Obs Name	imogaha20	imogaha19	imogaba18	imogaba17	imogaha16	imogaha15	imogaha14	imogaha13	imogaha12	imogaba11	imogaha10	imogaha9
Obs Date	2014-12-25	2014-11-28	2014-10-29	2014-09-27	2014-09-01	2014-06-13	2014-04-22	2014-03-22	2014-02-28	2014-01-27	2013-12-24	2013-11-10
DUS Date	MID-57017	MID-56000	MID-56060	MID-56028	MID-56002	MID-56822	MID-56760	MID-56738	MID-56716	MID-56684	MID-56650	MID-56615
RLLAC	NI3D=37017	IVIJD-30990	NIJD-30900	141312-30928	NIJD=30902	NJD=30822	MJD=30709	MJD=30738	KOWD	KO	KOWD	KOWD
CTA 102									KOWD	KO KO	KOWD	KOWD
10730 11/1									KQWD	KO KO	KOWD	KOWD
M87									KO	KO	KOWD	KOWD
MDK 421										<u>ko</u>	KO	KOWD
01287										KO	KOWD	KOWD
NP 4 0530									KOW	KO KO	KQWD	<u>KQ#D</u>
SCP A									KO	<u>ko</u>		
3C111									<u>ny</u>	KO	KOWD	KOWD
3C272B									V	<u>NO</u>	KOWD	KOWD
3C270								KOWD	<u>n</u> KOW	<u>ko</u>	KOWD	KOWD
30275								<u>KQWD</u>	v	<u>v</u>	V	V
3C345									<u>n</u>	<u>A</u>	KOWD	KOWD
20446									<u>NV</u>		KOW	KOW
20454.2										VO.	KOWD	KOWD
2094									KOWD	<u>KO</u>	KOWD	KOWD
4028.07									KOW	NO NO	KOWD	KOWD
4C28.07									KOW	<u>NQ</u>	KOWD	KOWD
4C38.41									KOW	<u>NQ</u>	KOWD	KOWD
0005-164									<u>NUW</u>	NO	KOWD	KQWD
0219+254										KQ	KOW	KQ
0218+35A										<u>KQ</u>	KQ	KOWD
0420-014										KQ	KOWD	KQWD
0528+134			<u> </u>							KQ	KOW	KQW
0716+71										KQ	KQWD	KQWD
0/35+1/8			<u> </u>							<u>NU</u>	KUW	KQW
0827+243											KQ	KQ
0836+710										KQ	<u>kQW</u>	KQW
1044 + 719			1	1						IKO	11	11

G

90%

Q Search

☆自

 \equiv

ABP -

L

1633+382

- 1633+382, Aka 4C 38.41
 - OVV, HPQ Flat radio spectrum
 - z=1.813, ~14 Gpc, 8.54 pc/mas
 - Relatively bright in radio (Flux 2-4 Jy @15GHz)
 - γ-ray bright source
- Very popular source in various programs
 - BU-VLBA, iMOGABA, SM<mark>A, OVRO,...</mark>
 - Observational synergy
- Ideal target to study variability & γ-ray flares
- Target of iMOGABA
- Flared period between 2013-2015
 - Observations and Data collection
 - OVRO, iMOGABA, SMA, Optical, Swift, Fermi..

Light Curve

- Follow-up
 - 2012 Mar 2015 Aug
- iMOGABA didn't observe all
 - beginning of the flares
 - Maintenance seasons
 - Gaps covered by BU 43 GHz data
- Multi-frequency comparison
 - Correlation with other frequencies
 - Other flares in high freq. bands

- Time lags
 - Radio Radio correlations
 - Compatible w/ zero time lag
 - Possible trend? But too large uncertainties
 - Radio Optical correlations
 - Weak correlation
 - If any, large time lag
 - Radio γ-rays correlation
 - Significant time lag

- Time lags
 - Radio Radio correlations
 - Compatible w/ zero time lag
 - Possible trend? But too large uncertainties
 - Radio Optical correlations
 - Weak correlation
 - If any, large time lag
 - Radio γ-rays correlation
 - Significant time lag
- Indications of different emitting regions at high energies / radio?

- Time lags
 - Radio Radio correlations
 - Compatible w/ zero time lag
 - Possible trend? But too large uncertainties
 - Radio Optical correlations
 - Weak correlation
 - If any, large time lag
 - Radio γ-rays correlation
 - Significant time lag
- Indications of different emitting regions at high energies / radio?
 - Shock-in-jet model?

New VLBI component ejection near brightest γ-ray flares

- $v(C2) = 9.4 \pm 0.8c$
- Γ~12-14; δ~19-21 for θ~2.5°, in agreement with Hovatta+09
- $v(C3) = 12.5 \pm 0.8c$

- Turnover Frequency
 - IMOGABA (22, 43, 86, 129) + OVRO + SMA
- Relation between flux density and turnover frequency

- Turnover Frequency
 - IMOGABA (22, 43, 86, 129) + OVRO + SMA
- Relation between flux density and turnover frequency
 - In the Shock in jet model, three stages: Compton, Synchrotron, Adiabatic
 - Data compatible with small- $\theta \epsilon_{syn}$ followed by ϵ_{adiab} .

- Magnetic Fields
 - Synchrotron Self Absorption
 - Equipartition
- Characteristics
 - Constant over the whole period
 - BSSA << Beq
- Implications
 - B may not play an important role in the flares/component ejection
 - Flares associated with particle dominated regions

Conclusions

Remember the two questions raised at the beginning

- What is the location of the gamma-ray flares?
- What is the cause of the gamma-ray flares?

Conclusions

- Remember the two questions raised at the beginning
 - What is the location of the gamma-ray flares?
 - Pinpointed their origin at around 1pc from the central engine
 - What is the cause of the gamma-ray flares?
 - A new ejected component due to particle injection traveling through the jet

Conclusions

- Remember the two questions raised at the beginning
 - What is the location of the gamma-ray flares?
 - Pinpointed their origin at around 1pc from the central engine
 - What is the cause of the gamma-ray flares?
 - A new ejected component due to particle injection traveling through the jet
- Question: Is it the same for all sources?
 - More investigation needed
 - MOGABA has a good sample of sources to investigate
 - 1633+382 (Algaba+17)
 - 0716+714 (J. W. Lee+17)
 - 3C84 (Hodgson+16,17)
 - BL Lac (D. W. Kim+17)
 - M87 (J. W. Kim+17)
 - ...and more to come!

Thanks

M87 (M 87 - NGC 4486)

Type: Galaxy

Size: +0°07'12"

Magnitude: **8.60** RA/DE (J2000): 12h30m48.0s/+12°24'00.0" RA/DE (of date): 12h30m54s/+12°23'22" Hour angle/DE: 19h19m8s/+12°23'22" (geometric) Hour angle/DE: 19h19m14s/+12°24'58" (apparent) Az/Alt: +96°41'29"/+22°16'38" (geometric) Az/Alt: +96°41'29"/+22°18'47" (apparent)

-5 RA Offset (mas)

FOV 1 5º 92.6 EPS 2001-12-02 10:56:34

Active Galactic Nuclei

- Quick summary of AGNs
 - Compact region in the center of the galaxy
 - Excess of luminosity that cannot com from stars
 - Curtiss (1918) "A curious straight ray apparently connected with the nucleus..."
- Some of the most energetic objects
 - Power about > 10⁴¹ erg/s
 - Radiating at most bands from radio to γ-rays
- Come in different flavors
 - Radio Galaxies
 - FR1, FR2
 - Blazars (BL Lacs + Quasars) beamed counterparts of radio galaxies
 - FSRQ: strong lines in optical spectra, prominent accretion disk signature, high radio and bolometric luminosity (FR2 counterparts), "red" SEDs
 - BLL: weak or no lines, radiatively inefficient accretion disk, low luminosity (FR1 counterparts), "blue" SEDs

Active Galactic Nuclei

- Statistical Properties
 - CLEAN flux

- Fermi-LAT observes the gamma-rays sky
 - All sky survey in 2 orbits (~3 hours)
 - 4 years of data released in their 3FGL catalog (Acero+15)
 - Most of the sources are AGN

- Fermi-LAT observes the gamma-rays sky
 - All sky survey in 2 orbits (~3 hours)
 - 4 years of data released in their 3FGL catalog (Acero+15)
 - Most of the sources are AGN

Gamma-ray flares are common!

ATel#2943

Fermi LAT detection of an intense GeV flare from the high-redshift and gravitationally lensed blazar PKS 1830-211

ATel #2943; S. Ciprini (Perugia Univ. / ASI-INAF, Italy), on behalf of the Fermi Large Area **Telescope** Collaboration on 15 Oct 2010: 16:52 UT Distributed as an Instant Email Notice Request For Observations

Credential Certification: Stefano Ciprini (stefano ciprini@pg.infn.it)

Subjects: Gamma Ray, >GeV, Request for Observations, AGN, Blazar, Ouasar

Fermi LAT detection of a GeV flare from GB6 B1310+4844

ATel #2306; K. V. Sokolovsky (MPIfR/ASC Lebedev), S. E. Healey (Stanford/KIPAC), F. Schinzel (MPIfR); on behalf of the Fermi Large Area Telescope Collaboration, and Y. Y. Kovalev (ASC Lebedev/MPIfR) on 21 Nov 2009; 01:33 UT Distributed as an Instant Email Notice Request For Observations

Credential Certification: Teddy Cheung (ccheung@milkyway.gsfc.nasa.gov)

Subjects: Gamma Ray, >GeV, Transient

Referred to by ATel #: 2310, 2316 observation of ongoing GeV activity

spectrally hard blazar GB6 B1310+4844 (GB1 1310+487) ATel #2316; E. Hays (NASA/GSFC), L. Escande (CNRS/IN2P3 Bordeaux) on behalf of the

ATel#4343 Fermi LAT detection of a GeV flare from the gravitationally lensed blazar S3 0218+35

ATel #4343; S. Ciprini (ASI ASDC & INAF OAR, Rome), on behalf of the Fermi Large Area **Telescope** Collaboration on 28 Aug 2012; 20:45 UT Credential Certification: Stefano Ciprini (stefano.ciprini@asdc.asi.it)

Subjects: Gamma Ray, >GeV, Request for Observations, AGN, Blazar, Quasar

Referred to by ATel #: 4351, 4361, 4371, 4411

on **28 Nev 2009; 00:29 UT** Credential Certification: Elizabeth Hays (elizabeth.a.hays@nasa.gov) Fermi LAT detection of renewed GeV gamma-ray activity from the gravitationally lensed blazar PKS 1830-211

ATel #4158; Stefano Ciprini (ASI Science Data Center and INAF Rome, Italy), on behalf of the Fermi Large Area Telescope Collaboration on 7 Jun 2012; 21:53 UT Credential Certification: Stefano Ciprini (stefano.ciprini@asdc.asi.it)

Fermi LAT detection of a potential echo gamma-ray flare from gravitational lens \$3 0218+35

ATel #4371; M. Giroletti (INAF-IRA Bologna), M. Orienti (Univ. Bologna, INAF-IRA Bologna), C. C. Cheung (NRC/NRL); on behalf of the Fermi Large Area Telescope

Credential Certification: Teddy Cheung (ccheung@milkyway.gsfc.nasa.gov)

1633+382

1633+382

- Structure analysis
 - Jet components

C3

C4

-0.5

Relative Right Ascension (mas)

Core size

C2

(spm)

Relative 0

0.5 Declination

0.5

0.5

New VLBI component ejection near brightest γ-ray flares

-1

 $- v(C2) = 9.4 \pm 0.8c$

0

- Γ ~12-14; δ ~19-21 for θ ~2.5°, in agreement with Hovatta+09 $- v(C3) = 12.5 \pm 0.8c$
- Core size may show indications of physics also happening
 - $v(Core) \sim 7.8c$

G Q Search 90%

☆自 \equiv ABP 🔻 L

Monitoring of Gamma-ray Bright AGNs

Home MOGABA iMOGABA Publications KVN

• •

Interferometric Monitoring of Gamma-ray Bright AGNs

Images of the Gamma-ray Bright AGNs taken with Korean VLBI Network

-												
Obs Name	imogaba20	imogaba19	imogaba18	imogaba17	imogaba16	imogaba15	imogaba14	imogaba13	imogaba12	imogaba11	imogaba10	imogaba9
Obs Date	2014-12-25	2014-11-28	2014-10-29	2014-09-27	2014-09-01	2014-06-13	2014-04-22	2014-03-22	2014-02-28	2014-01-27	2013-12-24	2013-11-19
	MJD=57017	MJD=56990	MJD=56960	MJD=56928	MJD=56902	MJD=56822	MJD=56769	MJD=56738	MJD=56716	MJD=56684	MJD=56650	MJD=56615
BLLAC									<u>KQWD</u>	<u>KQ</u>	<u>KQWD</u>	KQWD
CTA102									<u>KQWD</u>	<u>KQ</u>	<u>KQWD</u>	KQWD
J0730-1141										KQ	KQWD	KQWD
<u>M87</u>									KQ	KQ	KQWD	KQWD
MRK421										<u>KQ</u>	<u>KQ</u>	KQWD
OJ287										<u>KQ</u>	<u>KQWD</u>	KQWD
NRAO530									<u>KQW</u>	<u>KQ</u>		
SGRA									KQ	KQ		
<u>3C111</u>										<u>KQ</u>	<u>KQWD</u>	KQWD
3C273B									K	KQ	KQWD	KQWD
<u>3C279</u>								KQWD	KQW	KQ	KQWD	KQWD
3C286									<u>K</u>	<u>K</u>	<u>K</u>	K
<u>3C345</u>									<u>KQ</u>	<u>KQ</u>	<u>KQWD</u>	KQWD
<u>3C446</u>											KQW	KQW
3C454.3										KQ	KQWD	KQWD
<u>3C84</u>									KQWD	<u>KQ</u>	KQWD	KQWD
4C28.07									KQW	KQ	KQWD	KQWD
4C38.41									KQW	KQ	KQWD	KQWD
4C39.25									KQW	KQ	KQWD	KQWD
0235+164										KQ	KQW	KQ
0218+35A										<u>KQ</u>	<u>KQ</u>	
0420-014										<u>KQ</u>	KQWD	KQWD
0528+134										<u>KQ</u>	KQW	KQW
0716+71										KQ	KQWD	KQWD
0735+178										KQ	KQW	KQW
0827+243											KQ	KQ
0836+710										KQ	KQW	KQW
1044 + 719										KO		1

Lee,...,Algaba,+16

Lee,...,Algaba,+16

CLEAN flux

Spectral index

