

EATING VLBI workshop, 2017, Jeju, South Korea

VLBI imaging of M81* at 3.4 mm

Wu Jiang¹, Zhiqiang Shen¹, Dongrong Jiang¹, Ivan Marti-Vidal², Noriyuki Kawaguchi¹

- 1. Shanghai Astronomical Observatory, CAS
- 2. Chalmers University of Technology, Onsala Space Observatory, Sweden

2017/11/1

The LLAGN in M81

E. Ros, et al. A&A , 2012.

1 μ as ~ 3 R_{sch}

Low Luminosity AGN (**LLAGN**) in spiral galaxy M81

- Distance: **3.96 + 0.29 Mpc** (Bartel et al. 2007)
- Radio luminosity ~ 10³⁷ ergs/s (e.g., Ho et al. 1999). 0.13 Jy@Xband (NED)
- X-ray luminosity ~ 10⁴⁰ ergs/s (e.g., Reynolds et al. 2009).
- Spectral index +0.3 up to ~200GHz (Reuter & Lesch 1996).
- Estimated mass of SMBH: ~7x10⁷
 M (e.g., Deveraux et al. 2003).

R_{sch} ~ 1 x 10⁻⁵ pc

Discrete jet

Discrete knot ejection from the jet after low energy X-ray flare in 2011.

Magnetic field 1.9<B<9.2 G

Ashley L. King, et al. Nature Physics, 2016.

Look into the M81 core and jet

Core size and P.A. of frequency(wavelength) dependence.

Precession of jet

The P.A. observed at 5GHz showed a precession period of 7.27 yr and a speed of drifting 0.54 degree/yr.

I. Martí-Vidal, et al. A&A, 2011. Page 5

P.A. change of jet ?

Pseudo Closure Amplitude(PCA) measurement

Motivations

Sensitivity of VLBI array

$$SEFD = \frac{8kT_{sys}}{\eta \pi D^2 \sqrt{2BT}}$$

Thanks to the development of modern technology:

- ✓ More/Big antenna dish
- ✓ Wide band receiver
- ✓ High frequency sampling
- ✓ High speed recording
- Fast frequency-switching / simultaneous multi-frequency receiving system

B

With improvement factor 1-2 (D), 10 (B), >10 (T), current VLBI sensitivity > sqrt(100) even at 3mm.

100mJy level targets ≠ faint sources

Higher sensitivity (sub-mJy@mm) makes weaker sources approachable:

- ✓ Nearby low luminosity sources, such as M81*
- ✓ High redshift sources

VLBA observation on M81 at Q/W band

Observation summary

Date Feb. 2016, clean weather.

Dur 8*h.*

- Sta. 8 VLBA station with 86G capability.
- Freq Q/W band, 43860/87720 MHz fast freq. switching + PR (SFPR)
- Rec. 256MHz BW, full pol, 2 Gbps Corr. @scorro

			Arizo	ona New Mexico Tex	as New Mexico Virgin Islands
Object	RA	DEC	Flux@86G	Separation Angle	Туре
M81*	09:55:33.1730	+69:03:55.061	71 mJy	0	AGN, Target
0954+658	09:58:47.2451	+65:33:54.818	1.16 Jy	3.5 deg	QSO, Phase and amplitude calibrator
1044+719	10:48:27.6199	+71:43:35.938	0.87 Jy	5.2 deg	QSO, Polarization calibrator
OJ287	08:54:48.8749	+20:06:30.641	2.7 Ју		Calibrator, D term calibrator

Basic idea of fast frequency-switching phasereferencing (FFPR)

After source frequency phase referencing (SFPR), we have,

VLBA observation on M81 at Q/W band

UV tracks of M81* (Q).

Clean map of M81 at 43GHz. Uniform weighting RMS=0.23 mJy/beam Dynamic range ~320

7 mm phases of M81* for SFPR at 3.4 mm, ref: LA.

Phases at 3.4mm before SFPR.

Page 14

Phases of M81* at 3.4mm with SFPR.

Fringe SNR (86GHz) via Integration time

First image of M81* at 3.4 mm!

Clean map of 86G imaging Natural weighting Peak=45.3 mJy/beam RMS=0.34 mJy/beam Dynamic range ~ 130

0.1 mas ~ 0.0016 pc ~ 300 Rsch

Core shift

Position angle changes

- The PA-Frequency relation was shifted in parallel.
- Drifting speed is ~0.5 degree/year.

Position angle with respect to frequency.

Core size

Core size in a power-law relationship to wavelength is valid at 3.4 mm.

Summary

- 1. The first image of M81* at 3.4 mm was successfully obtained with SFPR. DR ~ 130:1
- 2. Integration time at 3.4 mm increased from tens of second to tens of minutes with SFPR.
- 3. Core size in a power-law relationship with wavelength, $\propto \lambda^{0.88}$ is valid to 3.4 mm.
- 4. The minimum core size is constraint to ~80 R_{sch} .
- 5. Core shift of M81* from 43-87GHz is 57 \pm 14 µas, -151°, preliminary spectral index map is also obtained.

Future plan

- 1. Multi-epoch multi-frequency observations on M81* for better understanding the core and jet.
- 2. Polarimetry study of M81* in mm-VLBI.

Thank you!