Measuring the Core Shift of Sgr A*

Ilje Cho (KASI/UST, Korea)

T. Jung, B. W. Sohn (KASI/UST), G.-Y. Zhao(KASI), M. Kino (KASI/NAOJ), I. Agudo (IAA), M. Rioja, R. Dodson (ICRAR), K. Hada (Mizusawa Observatory/NAOJ)

> KASI: Korea Astronomy and Space science Institute UST: University of Science and Technology NAOJ: National Astronomical Observatory of Japan IAA: Instituto de Astrofisica de Andalucia ICRAR: International Centre for Radio Astronomy Research

Our Galactic Center: Sagittarius A* (Sgr A*)

Thanks to its proximity, we can directly study the environment of vicinity of SMBH.

BH shadow

(Bardeen 1973; Luminet 1979; (Johnson+2015; Fish+ 2016; Shen+ 2005; Broderick & Loeb 2006) Chael+ 2016; Broderick+ 2016)

Our Galactic Center: Sagittarius A* (Sgr A*)

GRMHD simulation including jet model (Moscibrodzka+ 2014)

Lightcurves for Sgr A*, May 18th 2012, combined SPWs

Our Galactic Center: Sagittarius A* (Sgr A*)

What does the VLBI image tell us ?

What does the VLBI image tell us ?

	Jet (Blandford-Konigl model)	Accretion flow	Scattering effect		
Structure	Asymmetric (or weakly-symmetric)	Asymmetric	Symmetric (or sub-structure)		
Core* position	(frequency dependent) Core shift	(maybe) Fixed	Temporal wandering		
Jet Co P 22 GHz 43 GHz -SMBH	Pre shift adio core positions get closer to the tral SMBH at higher frequencies. Hada+ 2011 Hada+ 2010 Se GHz, 129 GHz	Jet Iow Core shift (Δr) high SMBH & accretion flow (larger) core shift	v^{low} If a jet dominates the radiation: v^{high} If a RIAF dominates the radiation: (smaller) core shift		
		along with jet axis by a jet component perpendicular to the accretion flow	 along with aymmetry by a doppler-boosted side of RIAF in the observer's frame 		
		Perpendicular Geor	netry		

Core shift: finding a footprint of outflow

However,

1. Time-lag between the observations at different frequencies was inevitable (i.e. not simultaneous), so the variability effects were ignored.

2. Only for low frequencies (< 43 GHz).

Core shift: finding a footprint of outflow

Dec Core Shift (mas/cm)

Source Frequency Phase Referencing (SFPR)

Source Frequency Phase Referencing (SFPR)

Source Frequency Phase Referencing (SFPR)

Core shift of Sgr A*: our preliminary results

The 86 GHz core has appeared to the south (~0.3 mas) relative to the 43 GHz core. Note that however both core shifts of target and calibrator have been mixed.

Core shift of Sgr A*: our preliminary results

I) Constraining the Calibrator's effect

2) Interpolation uncertainty: secZ difference effect

On-going efforts

KVN observations list

Year	Date	Obs. code	K	Q	W	D	Record	Note	J1744	J1700	J1717	J1713	J1745	J1748
2015A (Good 4 of 8) M	Mar. 16	n15bs02d		0	0		l Gbps		0	0				
	Mar. 28	n15bs02f		0	0		l Gbps		0	0				
	Apr. 10	n15bs02g		0	0		l Gbps		0	0				
	May. 07	n I 5bs02i		0	0		l Gbps		0	0				
2016B (Good 4 of 8) Jan. 1 Jan. 2	Dec. 06	n16ic01e		0	0		l Gbps		0		0	0		
	Jan. 02	n16ic01f		0	0		l Gbps		0		0	0		
	Jan. 11	n16ic01g	0	0	0	X	l Gbps		0	0				
	Jan. 25	n16ic01h		0	0		l Gbps		0		0	0		
2017A (All 5 epochs) I supplement Ju	Mar. 08	n17ic01a	0	0	0	X	l Gbps		0	0				
	Apr. 23	n17ic01d	0	0	0	X	l Gbps		0	0				
	May. 07	n17ic01e	0	0	0	X	l Gbps		0	0				
	Jun. 09	n17ic01f	0	0	0	0	I+8 Gbps	Geoblock	0	0				
2017B (All 5 epochs)	Sep. 15	n I 7ic02a	0	0	0	0	I+8 Gbps	Geoblock	0	0			0	0
	Oct. 18	n I 7ic02b	0	0	0	0	I+8 Gbps	Geoblock	0	0			0	0

KaVA observations list (to resolve the structure of Calibrators)

Year	Date	Obs. code	K	Q
2017A (1+3 epochs)	Jan. 08	r17008a (k16ic02a)		0
	Mar. 02	r17061b (k17ic01a)		0
	Mar. 13	r17072a (k17ic01b)		0
	Apr. 27	r17117a (k17ic01c)		0
2017B (2[K/Q] + 2 epochs)	Sep. 16	k17ic03a	0	
	Sep. 17	k17ic03b		0

On-going efforts

KaVA observations list (to resolve the structure of Calibrators)

Year	Date	Obs. code	К	Q
2017A (1+3 epochs)	Jan. 08	r17008a (k16ic02a)		0
	Mar. 02	rl7061b (kl7ic01a)		0
	Mar. 13	r17072a (k17ic01b)		0
	Apr. 27	r17117a (k17ic01c)		0
2017B (2[K/Q] + 2 epochs)	Sep. 16	k17ic03a	0	
	Sep. 17	k17ic03b		0

Summary

I. Measuring the **Core shift** is a great tool to investigate the Jet physics, especially by the Blandford-Konigl process.

2. **KVN** is an ideal VLBI system to study the core shift effect with a simultaneous multi-frequency observing capability and an optimized technique of **SFPR for VLBI astrometry**.

3. To confirm a precise astrometric result, however, careful investigation of **the residual phases** is necessary, such as the **calibrator's core shift** (or extended structure) and the possible **interpolation uncertainties** (e.g., secZ effect).

Please Stay Tuned !

Thank you