Searching for jets from M31* with VLBA and Tianma

Sijia Peng (Nanjing University)

Collaborators: Zhiyuan Li (NJU), Zhiqiang Shen, Yang Yang, Wu Jiang (SHAO) Lorant Sjouwerman (NRAO)

Outline

- Motivation
- Observation & results
- Summary

Motivation: Low-luminosity AGN

- Most massive galaxies host a central supermassive black hole
- In local universe, most SMBHs are LLAGN
- Physics of SMBH accretion & feedback at low-accretion rate

Heckman et al. 2014

Motivation: Sgr A*

- $L_{bol} \leq 10^{-8} L_{Edd}$, least luminous AGN known
- Mass: $4 * 10^6 M_{sun}$
- Prime target for Event Horizontal Telescope
- A jet-ADAF model can satisfactorily explain the broadband SED of Sgr A*: jet accounts for the radio emission (synchrotron)
- However, the putative jet so far lacks of firm detection on all scales

Motivation: M31*

- The Andromeda galaxy (M31) is the nearest massive galaxy (d=780 kpc)
- M31*: a dynamical mass of $1.4 * 10^8 M_{sun}$ inferred from stellar kinematics. (Bender et al. 2005)
- Eddington ratio: ~ 10^{-8} similar to Sgr A* A rare opportunity to study LLAGN

- Crane et al. (1992) first discovered a compact radio source at the nucleus of M31 using VLA (named M31*)
- An X-ray counterparts was identified by Garcia et al. (2010) with Chandra

Garcia et al. 2010

Motivation: M31*

- M31* produced an X-ray outburst on Jan. 6 2006, and subsequently it entered a more active state since then (Li et al.2011)
- The only second LLAGN known to show X-ray flares, after Sgr A*

Motivation: M31*

- We carried out VLA monitoring observations in 2011~2012 in four bands
- hints for pc-scale jet in C-band
- spectral index: $\alpha \sim -0.45 (S_v \sim v^\alpha)\,$ consistent with jet synchrotron, different from Sgr A* (Yang et al. 2017)

Observation

 Using VLBA + Tianma-65m + Shanghai-25m to search for jets from M31*

Observation

			<u> </u>	
Project code	Epoch	Central freq.	Integral time	array*
BL223_A	2016-4-20	$6 \mathrm{GHz}$	$7.0\mathrm{h}$	All VLBA
$BL223_B$	2016-8-29	$5 \mathrm{GHz}$	$7.0\mathrm{h}$	TM + SH + VLBA - PT - SC
$BL223_C$	2016-10-4	$5 \mathrm{GHz}$	$7.0\mathrm{h}$	TM + SH + All VLBA
$BL223_D$	2016-11-18	$5 \mathrm{GHz}$	$7.0\mathrm{h}$	TM + VLBA - HN

Table 1: Information for project BL223

- Phase-referenced mode, phase calibrator: J0038+4137
- The center of M31:

RA = 00h42m44.32s, Dec = +41°16'08.50" (J2000)

Results

- No detection during any of four epochs
- 3-sigma upper-limit: ~27µJy for single epoch
- 5-sigma upper-limit for combined_BCD: 27µJy

Residual I map. Array: BFHKLMNOPSST M31 at 4.916 GHz 2016 Oct 04

Project code	Central freq.	Theoretic RMS	Observed RMS [*]	Synthesis aperture
	(GHz)	$(\mu Jy/beam)$	$(\mu Jy/beam)$	$(mas \times mas, \ ^{o})$
BL223_A	6	12.8	12.7	$1.27 \times 2.31, -34.5$
$\mathrm{BL223}_{-}\mathrm{B}$	5	6.6	10.0	$0.74 \times 1.85, -6.4$
$BL223_C$	5	6.1	9.4	$0.72 \times 1.98, -2.8$
BL223_D	5	6.2	8.7	$0.71 \times 1.88, -4.4$
$Combine_BCD$	5	4.3	5.4	$0.72\times1.90,-4.4$

Table 2: Results of M31*

Observed RMS of last three epochs is obviously higher than its theory maybe due to the EVN Calculation for TM and SH is not suitable.

Discussion: two possibilities

-- Fading radio emission

- + 2002~2005: average flux density 60.0 \pm 10.0 μJy at 5 GHz in VLA
- 2011~2012: 28.3 \pm 1.9 μ Jy at 6GHz in VLA (extrapolate to ~31 μ Jy in 5GHz)
- 2016: 5 sigma upper-limit 27 μJy in VLBA+Tianma

as before 2012(work in preparation)

Discussion: two possibilities

-- Extended jets

- VLA A-array has a resolution at 0.3"/1 pc , corresponding to 10⁵ R_{sch}
- With VLBA + Tianma, we achieved 0.7mas /10⁻³ pc, corresponding to 200 R_{Sch}
- The extended jets dominate the total radio flux detected by VLA, now resolved on masscales

Yang et al. 2017

Summary and prospect

- Joint observations of VLBA, Tianma 65-m and Shanghai 25m at C-band in four epochs in 2016.
- Our resolution reaches 0.7mas (~200 R_{Sch}).
- No detection on 5-sigma upper-limit in M31*.
- May suggest extended jets.
- Prepare apply for EVN+EAVN observations

Discussion: J0038+4137

- Z=1.35
- High resolution image in C-band
- Rms: 74.4 μJy/beam
- Peak: 0.202 Jy/beam

Discussion: J0038+4137

• Left: the image of J0038+4137 on 15GHz in 2002;

Right: the image of J0038+4137 on 5 GHz in 2016

Red: Core Blue: Jet's components